Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 25(2): e13429, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353606

RESUMO

Ustilaginoidea virens is the causal agent of rice false smut, which has recently become one of the most important rice diseases worldwide. Ustilaginoidins, a major type of mycotoxins produced in false smut balls, greatly deteriorates grain quality. Histone acetylation and deacetylation are involved in regulating secondary metabolism in fungi. However, little is yet known on the functions of histone deacetylases (HDACs) in virulence and mycotoxin biosynthesis in U. virens. Here, we characterized the functions of the HDAC UvHOS3 in U. virens. The ΔUvhos3 deletion mutant exhibited the phenotypes of retarded growth, increased mycelial branches and reduced conidiation and virulence. The ΔUvhos3 mutants were more sensitive to sorbitol, sodium dodecyl sulphate and oxidative stress/H2 O2 . ΔUvhos3 generated significantly more ustilaginoidins. RNA-Seq and metabolomics analyses also revealed that UvHOS3 is a key negative player in regulating secondary metabolism, especially mycotoxin biosynthesis. Notably, UvHOS3 mediates deacetylation of H3 and H4 at H3K9, H3K18, H3K27 and H4K8 residues. Chromatin immunoprecipitation assays indicated that UvHOS3 regulates mycotoxin biosynthesis, particularly for ustilaginoidin and sorbicillinoid production, by modulating the acetylation level of H3K18. Collectively, this study deepens the understanding of molecular mechanisms of the HDAC UvHOS3 in regulating virulence and mycotoxin biosynthesis in phytopathogenic fungi.


Assuntos
Histonas , Hypocreales , Micotoxinas , Virulência , Metabolismo Secundário
2.
Vaccine ; 41(5): 1132-1141, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36621409

RESUMO

Current vaccine formulations elicit a recall immune response against viruses by targeting epitopes on the globular head of hemagglutinin (HA), and stalk-reactive antibodies are rarely found. However, stalk-specific memory B-cell expansion after influenza vaccination is poorly understood. In this study, B cells were isolated from individuals immunized with seasonal tetravalent influenza vaccines at days 0 and 28 for H7N9 stimulation in vitro. Plasma and supernatants were collected for the analysis of anti-HA IgG using ELISA and a Luminex assay. Memory B cells were positively enriched, and total RNA was extracted for B cell receptor (BCR) H-CDR3 sequencing. All subjects displayed increased anti-H3 antibody secretion after vaccination, whereas no increase in cH5/3-reactive IgG levels was detected. The number of shared memory B-cell clones among individuals dropped dramatically from 593 to 37. Four out of 5 subjects displayed enhanced frequencies of the VH3-23 and VH3-30 genes, and one exhibited an increase in the frequency of VH1-18, which are associated with the stalk of HA. An increase in H3 stalk-specific antibodies produced by B cells stimulated with H7N9 viruses was detected after vaccination. These results demonstrated that H3 stalk-specific memory B cells can expand and secrete antibodies that bind to the stalk in vitro, although no increase in serum H3 stalk-reactive antibodies was found after vaccination, indicating potential for developing a universal vaccine strategy.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Células B de Memória , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinação , Células Clonais , Imunoglobulina G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...